
191.106 – Runtime Verification : SS’2018

Project A: Offline LTL+Past Monitors

Mehmet Ozgan

Matr.Nr.: 0526530

{mozgan}@gmail.com

August 17, 2018

1 Introduction

In this work we concentrated on the LTL+Past, i.e. the Linear Temporal Logic (LTL) with
extending Past operators on the finite trace. LTL+Past provides temporal operators that refer
to both the past and the future states of an execution relative to a current point of reference.

Formulas of LTL+Past are built from a set P of propositional symbols and are closed under
the boolean connectives. An LTL+Past formula ϕ is defined by the following grammar:

ϕ ::=p atomic proposition

| ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 boolean connectives

|ϕ | ϕ | sϕ | wϕ | ϕ1 U ϕ2 LTL operators

| sϕ | wϕ | ϕ1 S ϕ2 |ϕ | ϕ Past operators

The semantics of LTL+Past is given in terms of finite traces denoting a finite sequence of
consecutive instants of time, i.e., finite words π over the alphabet of 2P , containing all possible
interpretations of the propositional symbols in P. For an interpretation π, we inductively define
when an LTL+Past formula ϕ is true at an instant i ∈ {0, 1, . . . , n − 1} written π[i] � ϕ (or
π[i], ϕ � true) as follows:

• π[i] � p ⇐⇒ p ∈ π(i), p ∈ P.

• π[i] � ¬ϕ ⇐⇒ π[i] 2 ϕ.

• π[i] � ϕ1 ∨ ϕ2 ⇐⇒ π[i] � ϕ1 or π[i] � ϕ2.

• π[i] � ϕ1 ∧ ϕ2 ⇐⇒ π[i] � ϕ1 and π[i] � ϕ2.

• π[i] � ϕ1 → ϕ2 ⇐⇒ π[i] � ¬ϕ1 or π[i] � ϕ2.

• π[i] �ϕ ⇐⇒ ∃j ∈ [i, n] : π[j] � ϕ.

• π[i] � ϕ ⇐⇒ ∀j ∈ [j, n] : π[j] � ϕ.

• π[i] � sϕ ⇐⇒ i < n and π[i+ 1] � ϕ.

• π[i] � wϕ ⇐⇒ i = 0 or π[i+ 1] � ϕ.

1

• π[i] � ϕ1 U ϕ2 ⇐⇒ ∃j ∈ [i, n) : π[j] � ϕ2 and ∀k ∈ [i, j) : π[k] � ϕ1.

• π[i] � sϕ ⇐⇒ i > 0 and π[i− 1] � ϕ.

• π[i] � wϕ ⇐⇒ i = 0 or π[i− 1] � ϕ.

• π[i] � ϕ1 S ϕ2 ⇐⇒ ∃j ∈ [0, i] : π[j] � ϕ and ∀k ∈ (j, i] : π[k] � ϕ.

• π[i] �ϕ ⇐⇒ ∃j ∈ [0, i] : π[j] � ϕ.

• π[i] � ϕ ⇐⇒ ∀j ∈ [0, i] : π[j] � ϕ.

Let ϕ, ψ be LTL+Past formulae, then the following rules are equivalent:

• ϕ→ ψ ≡ ¬ϕ ∨ ψ

• ϕ ≡ ϕ ∨s(ϕ)

• ϕ ≡ ϕ ∧w(ϕ)

• ϕ U ψ ≡ ψ ∨ (ϕ ∧s(ϕ U ψ))

• ϕ S ψ ≡ ψ ∨ (ϕ ∧s(ϕ S ψ))

• ϕ ≡ ϕ ∨s(ϕ)

• ϕ ≡ ϕ ∧w(ϕ)

2 Monitoring

In this project we implemented an algorithm which is based on on-the-fly rewriting formulas

to compute the given LTL+Past formulas on the given finite sequences in Python1 . The
above defined equivalences of LTL+Past allow us very efficient way to implement a recursive
rewriting-based algorithms. For example; it is given an LTL+Past formula ϕ = ”Every p1 occurs
p2 strictly on the next time”:

ϕ = (p1→sp2). (1)

We already know from the equivalences of LTL+Past that ϕ can be expressed as follows:

ϕ = (p1→sp2) ∧w(ϕ). (2)

At this point p1→sp2 is computed for the current position and then ϕ will be computed for
the next position because w shifts the formula ϕ to the next position on the given sequence.
This means that we update the current position for the next one and write the formula again
for the updated position. This computation goes to the last position of the sequence because
the formula ϕ is already defined in recursively way. When we have a recursive definition of the
formula, then we can write the following algorithm for LTL+Past monitoring:

1
version 3.7.

2

Algorithm 1: Rewriting formulas

Input: LTL+Past formula f , finite sequence π
Output: Pass iff f is satisfied on π, Fail if f is violated on π

1 Use equivalent rules to split f
- Current obligations
- Next step obligations

2 Read inputs and substitute the values of current obligations
3 Simplify the rest of the formula

- Next step obligations become current obligations
4 Repeat step 1

2.1 LTL+Past Operators

The following table shows that how LTL+Past operator can be used in this project:

LTL+Past Operator Interpreted in Python Using in Python

¬ not not ϕ

∨ or ϕ or ψ

∧ and ϕ and ψ

→ implies ϕ implies ψ

 eventually eventually ϕ

 always always ϕ

s s next s next ϕ

w w next w next ϕ

U until ϕ until ψ

s s prev s prev ϕ

w w prev w prev ϕ

S since ϕ since ψ

 once once ϕ

 historically historically ϕ

The all LTL+Past operators are implemented in the file LTLPast.py. The above given formula
ϕ = (p1→sp2) must be written as always(p1 implies s next p2) in our implementation.

2.2 Execution

We use the following usage to execute the implementation of LTL+Past monitoring:

python3 ltl-past-monitor.py specification.ltl inputs.csv.

inputs.csv contains a finite sequence, and specification.ltl contains an LTL+Past formula in the
infix form which is computed on the given finite sequence. In both inputs.csv and specification.ltl

the propositions must be in the form of p[0− 9]+, i.e. p1, p2, p3,

2.3 Grammar

In this project we used TatSu which is a tool that takes grammars as input, and outputs
memoizing (Packrat) PEG parsers in Python. TatSu can be installed for Python3 as follows:

3

pip3 install tatsu.

The above LTL+Past grammar is written in TatSu as follows:

1 GRAMMAR = ’ ’ ’
ignore C s t y l e comments , i . e .
/∗ t h i s i s a comment and
must be ignored !
∗/

6 @@comments : : /\/\∗ (\∗ (? !\/) | [ˆ ∗]) ∗\∗\//

ignore Python s t y l e comments
@@eol comments : : /#.∗?$/

11 # LTL+Past Grammar
@@grammar : : LTL Past

s t a r t = expre s s i on $;

16 expr e s s i on =
| expr e s s i on ’ or ’ exp r e s s i on
| expr e s s i on ’ and ’ exp r e s s i on
| expr e s s i on ’ imp l i e s ’ exp r e s s i on
| expr e s s i on ’ s i n c e ’ exp r e s s i on

21 | expr e s s i on ’ u n t i l ’ e xp r e s s i on
| formula
;

formula =
26 | ’ not ’ formula

| ’ w prev ’ formula
| ’ s p r ev ’ formula
| ’ once ’ formula
| ’ w next ’ formula

31 | ’ s next ’ formula
| ’ h i s t o r i c a l l y ’ formula
| ’ e v en tua l l y ’ formula
| ’ always ’ formula
| f a c t o r

36 ;

f a c t o r =
| ’ (’ ˜ @: expr e s s i on ’) ’
| atom

41 ;

atom = /p\d+/ ;
’ ’ ’

As we see the atoms are in the form p[0 − 9]+, i.e. p1, p2, p3, For example if the given
LTL+Past formula is always(p1 implies s next p2), then TatSu returns the result in the struc-
ture list of list as [’always’, [’p1’, ’implies’, [’s next’, ’p2’]]], which is still in the infix
form. To convert a formula from infix to prefix form we wrote a function namely prefix(f)

which can be found in the file spec.py. This returns the formula in the prefix form as [’always’,
[’implies’, ’p1’, [’s next’, ’p2’]]].

2.4 Data Structures

The given formula after parsing is converted from infix to prefix form and its data structure is
list of lists. It is easy to see that the first element of each list is either an atomic proposition
or an LTL+Past operation, which means that we can split each list in the simple way by using
an if-else condition as follows:

1 i f i s i n s t a n c e (formula , s t r) :
formula : an atomic p ropo s i t i on
return sequence [formula] [index]

e l i f l en (formula) == 2 :
formula [0] : unary opereat i on

6 f = ge t a t t r (LTLPast , formula [0] . upper ())
re turn f (formula [1] , sequence , index)

e l s e :
formula [0] : b inary operat ion
f = ge t a t t r (LTLPast , formula [0] . upper ())

11 return f (formula [1] , formula [2] , sequence , index)

4

More general implementation for splitting of one or two formulas, namely SplitPSI(), can be
found in the file LTLPast.py.

For example if the first element of the current list is an atomic proposition then we get the
current value from the given sequence. If the first element of the current list is an unary
operation, then we call this operation with the second element of the list. In the same way, if
the first element of the current list is a binary operation, then we call this operation with the
second and third elements of the list. The all of both unary and binary LTL+Past operations
are implemented in the file LTLPast.py.

For the given finite trace we used the data structure of dictionary which is very useful in Python.
For example the inputs.csv contains the following finite trace:

p1, p2, p3
1, 0, 0
0, 1, 0
0, 0, 1

After the reading the input.csv file, the trace is converted in the structure of dictionary form
and given as follows:

s =
{

’ p1 ’ : [True , False , Fa l se] ,
4 ’ p2 ’ : [False , True , Fa l se] ,

’ p3 ’ : [False , False , True]
}

Dictionary allows us that the keys are atomic propositions which are given in the formula, and
each proposition has a finite sequence. For example if we want to access to the value of p2 on
the ith position, then we write just only s[p2][i].

3 Tests

In this section, we want to represent the following test which is discussed in the text above. Let
us write the following formula in the file specification.ltl : always(p1 implies s next p2). The
finite trace in the file inputs.csv is as follows:

p1, p2
1, 0
0, 1
0, 0
0, 0

We execute the monitoring program and this gives us the result Pass if the given formula is
satisfied on the given trace otherwise it returns Fail.

$ python3 ltl-past-monitor.py specification.ltl inputs.csv

Pass

If we change the last line of the trace from 0, 0 to 1, 0 then the formula is violated on this trace:

$ python3 ltl-past-monitor.py specification.ltl inputs.csv

Fail

5

References

[1] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded Maler, De-
jan Ničković, Sriram Sankaranarayanan. Specification-Based Monitoring of Cyber-Physical

Systems: A Survey on Theory, Tools and Applications. Lectures on Runtime Verification,
Springer, 2018.

[2] Klaus Havelund, Grigore Rosu. Synthesizing Monitors for Safety Properties.

[3] Timo Latvala, Armin Biere, Keijo Heljanko, Tommi Junttila. Simple is Better: Efficient

Bounded Model Checking for Past LTL.

[4] Marco Benedetti, Alessandro Cimatti. Bounded Model Checking for Past LTL. Springer-
Verlag, TACAS 2003, LNCS 2619, pp. 18–33, 2003.

[5] TatSu v.4.2.6 (grammar compiler). http://tatsu.readthedocs.io/en/stable/

6

	Introduction
	Monitoring
	LTL+Past Operators
	Execution
	Grammar
	Data Structures

	Tests

