
©Jesper Larsson Träff WS14/15

Introduction to Parallel Computing
Programming Projects

Jesper Larsson Träff, Angelos Papatriantafyllou
Vienna University of Technology

Parallel Computing
{traff,papatriantafyllou}@par.tuwien.ac.at

©Jesper Larsson Träff WS14/15

Finish, hand-in:

MONDAY, 2nd February 2015
Hand-in via TUWEL:

Report, program-code & access to the programs

Examination: Slots February 9-13th, 2015

Group-wise examination, ½ hour, based on project,
sign-up via TiSS

©Jesper Larsson Träff WS14/15

Concrete, small programming projects on material from the
lectures:

•understand and implement basic algorithms with potential for
linear speed-up

•Using the three parallel programming frameworks:
pthreads/OpenMP, Cilk, MPI with C

Parallel Computing Project Exercises

Understand, implement, test, benchmark, engineer, conclude!

Document by short report plus code. Oral presentation
(defense, examination) at end of semester

©Jesper Larsson Träff WS14/15

Goal

•Understand a basic problem in parallel computing

•Gain practical experience with some well-established, current
parallel programming frameworks

•Demonstrate speedup and scalability – and/or understanding
where obstacles and limitations are

•Document in a concise form (including code), support
conclusions by experiment

©Jesper Larsson Träff WS14/15

Execution

Groups of two; group (ideally) gets same grade (unless blatantly
clear that there is a huge asymmetry)

Can start now… (get account via TUWEL, deadline 17.11.14)

Use systems at TU Wien (saturn, jupiter), can develop at own PC
(OpenMP in gcc, Cilk and MPI, e.g., mpich, can be downloaded and
installed)

Finish by end of semester (2.2), hand-in via TUWEL

Groups must be registered in TISS

©Jesper Larsson Träff WS14/15

Hand-in

Short report with performance plots (8-15 pages), code not in
report but available. PREFERABLY ENGLISH!

1. Problem statement, hypothesis: what will you try to show
2. Explanation of algorithm (can use code-snippet), if needed

argue for correctness
3. Implementation in frameworks (can use code snippets for

explanation)
4. Correctness/testing (brief)
5. Experimental set up: benchmarking strategy (number of

repetitions, statistics), machines, problem sizes, parameters
6. Experimental results: performance, SPEEDUPs
7. Summary of results, comparison of the machines and the

frameworks (quantitative an qualitative)

©Jesper Larsson Träff WS14/15

Be concise, clear, brief:
•What you have done
•How you tested (main test cases, problems encountered)
•What you have not done (assumption like: „the program assumes
p is even“, „n must be a power of two“, …)
•Be honest – things that don‘t work
•What you intend to show with the experiments
•What came out
•Cite the literature you have used (excluding lecture slides),
acknowledge other sources (www, tech documents, friends, …)

Hand-in all solutions (TUWEL/email) at the latest Monday
2.2.2014!

Short report with performance plots (8-15 pages), code not
necessarily in report but must be available. PREFERABLY
ENGLISH!

©Jesper Larsson Träff WS14/15

Hand-in

Hand-in all solutions (TUWEL/email) at the latest Monday
2.2.2014!

•Report, including plots
•Code

As zipped tar-file in TUWEL

Access to program code (leave on saturn/jupiter): we will take
samples (compile&run)

©Jesper Larsson Träff WS14/15

Grading

Grade will be based on presentation/discussion, and hand-in.

Criteria:
•Completeness: all parts of exercise done
•Correctness, by argument (e.g. merging, prefix-sums), and test
•Well chosen test cases, in principle exhaustive, show that you
have thought about what needs to be tested
•Program actually working, given stated restrictions
•Code (readable, enlightening)
•Good plots/tables showing the properties (speed-up, work) of
the implementations
•Achieved performance improvement – don‘t be too depressed if
speed-up is modest and less than p

½ hour discussion per group February 2014

©Jesper Larsson Träff WS14/15

Measuring time, benchmarking

Parallel performance/time varies… (system availability, „noise“)!!!

Aim: accurate, robust, reproducible measurements (and fast)

•Benchmark on many input instances and sizes – not only powers
of two or other special values
•Repeat (25-100 times)
•Report average (perhaps median), and best seen, minimum
completion time (do they differ?)

Recall: Tpar is time for last thread/core to finish! For OpenMP,
time in master thread, Cilk time in „master“ task, more care
required for pthreads. For MPI time on all processes, use
MPI_Reduce(MPI_MAX) to get slowest process

©Jesper Larsson Träff WS14/15

Use wall-clock time, not CPU time

•OpenMP: omp_get_wtime()
•Cilk: cilk_get_wall_time()
•pthreads: on your own, clock_gettime()or gettimeofday()
•MPI: MPI_Wtime();

•Plot time as function of problem size, fixed number of
threads/cores

•Plot time or speedup as function of number of threads/cores,
fixed problem size (but for different sizes)

pthread implementations: try not to measure pthread_create
time. Bonus: what is the cost of thread creation?

©Jesper Larsson Träff WS14/15

Programs shall do something sensible for all inputs, never crash.

If there are conditions on input, terminate gracefully when not
fulfilled (e.g. „Sorry: n has to be power of 2“, …)

„External testing“:
Construct small set of test cases, including the extreme cases,
argue that this covers the program execution, construct such
that verification is easy (and can be implemented in parallel);
also do verification by comparing to sequentially computed
result (needed anyway for speedup measurements)

Testing, correctness

Use “performance counters” to verify that e.g. number of
operations (of a certain type) are as expected

©Jesper Larsson Träff WS14/15

Input/output

All implementations take input either from a file, or (better)
from an input generator (implement generators for different,
relevant test cases).

For OpenMP/Cilk: input stored in array/matrix in shared
memory. Structure/representation of the input (row-wise,
column-wise, …) is part of the specification of the
implementation, and can be chosen freely.

For MPI: input distributed in roughly evenly sized substructures
over the MPI processes. Output shall follow the same
distribution.

Generation and distribution of input NOT part of the problem,
the time for this shall not count in speed-up calculation

©Jesper Larsson Träff WS14/15

Tools (Softare Engineering anno 1995)

•gcc, mpicc, …
•emacs, vi
•gdb, dbx, gprof, valgrind, …
•latex, pdflatex
•gnuplot

•But all standard linux debug tools, plot tools, performance
tools, … are allowed, and can be used

To a limited extent:
we can install other tools on the machines if really needed –
contact us per email

©Jesper Larsson Träff WS14/15

Rules

Each group presents an own implementation. Both group
members will be responsible for all parts of the solution. It is
joint work, and not the point to split the project in two parts

Discussion in plenum (Q&A sessions) and with other groups
allowed and encouraged – but should lead to own solution

Goal is to understand the algorithms and problems, and to get
some practical parallel implemention experience

Solutions (even in part) that are copied from other groups, last
years material, or from the internet, … will get lowest possible
grade (NOT PASS)

©Jesper Larsson Träff WS14/15

Rules

Each group selects one (1) out of the following five (5) projects

There will be Q&A sessions on Tuesdays:
•25.11: Q&A
•2.12: Q&A (possibly)
•9.12: Q&A
•16.12: Q&A
•And in January

Start early!

©Jesper Larsson Träff WS14/15

Getting account on the systems (saturn/jupiter)

Use TUWEL: need 4K ssh public key

Instructions on how to log on and use the systems on TUWEL
(don’t circulate)!

DEADLINE for getting account:
17. November (Monday), 12:00

©Jesper Larsson Träff WS14/15

©Jesper Larsson Träff WS14/15

Project 1: Prefix-sums

Implement algorithms for the (inclusive) prefix-sums problem
from the lecture, and compare achieved performance to “best
known” sequential implementation

All implementations must work on arrays of some given type (not
only a C base type) with an associative function f (like the “+”,
but on the given type) as the associative operation (i.e.,
commutativity must not be exploited), and must work for any
array size and any number of threads/processes

©Jesper Larsson Träff WS14/15

Example:

Prefix(type *a, int n, (*f)(type *, type *))

The functionality can be viewed as a parallel library function.
Decide on functionality (in-place, or input to output array; array
of elements, or array of pointers to elements; type of function
pointer to associative operation) – and explain your choice
(motivated by convenience, or by performance)

©Jesper Larsson Träff WS14/15

OpenMP/pthreads:
1-2) Iterative and recursive, work-optimal solutions, 3) Hillis-
Steele, 4) blocked, with Hillis-Steele. Input in array, output in
(different or same) array. Verify with (NB: scalable)
performance counters the claimed bounds on the number of “+”
operations.

Cilk:
Devise a task-parallel, divide-and-conquer work-optimal solution
(hint: use a sequential cut-off). Verify work-optimality with
performance counters

MPI:
Each process has a block (array) of input, compute the prefix-
sums for the whole, distributed array of per-process blocks.
Process ranks determine the order of the blocks. Note that this
problem is different from that solved by MPI_Scan (how?)

©Jesper Larsson Träff WS14/15

Benchmarking:

Obtaining speedup on simple arrays (integers, doubles) with + is
difficult. Try to increase the computation per element pair by
for instance considering multiplication of small, Boolean
matrices (3x3, 4x4, …), use a simple n^3 algorithm for the
multiplication ; and show the speedup as the matrix-size
increases

©Jesper Larsson Träff WS14/15

Project 2: Merging

Implement work-optimal algorithms for merging two ordered
sequences stored in arrays (of size m and n)

All implementations must work on array of some given C base
type (can be given as typedef or macro) ordered by “<“, and
must work for any array sizes and any number of
threads/processes. It may be assumed that all elements in the
arrays are different (Bonus: stable merging)

©Jesper Larsson Träff WS14/15

OpenMP/pthreads: Either of the work-optimal algorithms, be
careful with the load-balancing

Cilk:
Either basic, “data-parallel” algorithm, or recursive, divide-and-
conquer approach; argue for the complexity of the latter. Bonus:
compare the two appraches. Bonus: Implement mergesort

MPI:
Each has a block of the input arrays. The challenge is to
implement the binary-like search; for this use one-sided
communication (MPI_Win_fence or MPI_Win_lock). It is
acceptable to assume that p divides n, and that m=n, to ease the
(co)rank computations

©Jesper Larsson Träff WS14/15

Testing and benchmarking:
Extreme cases: all elements of m-array smaller than all
elements of n-array; all elements of n-array smaller than all
elements of m-array; perfect interleaving of m- and n-elements.
Some regular, controllable distributions; random, ordered
arrays.

Verify by comparing output to sequentially merged sequences

©Jesper Larsson Träff WS14/15

Project 3: 2-dimensional 4-point stencil

A[i,j] A[i,j] <- (A[i-1,j]+A[i+1,j]+A[i,j-1]+A[i,j+1])/4

Implement parallel 2-d stencil computations: given nxm matrix
with boundary conditions given in 4 vectors, iterate the 2-d
stencil update over some given number of iterations.

boundary The input should be a matrix and
vectors of doubles. It is acceptable
to assume that p divides n and m

The “best known” sequential
implementation should not spend
any extra steps in moving data
between arrays (see lecture)

©Jesper Larsson Träff WS14/15

OpenMP/pthreads: Investigate and explain performance
differences for updating row-wise, column-wise, or diagonally. Is
it possible to save space, i.e., not to maintain a full, extra nxm
matrix?

Cilk: Is there a natural, task-parallel formulation of the stencil
update?

MPI: The input matrix is assumed to be distributed as n/rxm/c
submatrices over the p processes, where p = rc. Use MPI vector
datatype for the column wise exchange. Give a theoretical
speedup estimate. How should r and c be chosen for best
performance? (Hint: vector communication could be slower than
consecutive communication). Give implementations using 1)
MPI_Sendrecv (beware of deadlock), 2) non-blocking point-to-
point, and 3) one-sided communication for the exchange. Bonus:
is there an advantage by using a larger “halo” of “ghost cells”?
What is the trade-off? Bonus:Try MPI 3.0 neighbor collectives.

©Jesper Larsson Träff WS14/15

Project 4: Bucket- and radixsort

Implement variants of (stable) bucket (counting) sort: sort a
given array of n integers in some range [0,R[; normally R<<n, but
this should be a parameter of the implementations. Must work
for all n and p and R.

©Jesper Larsson Träff WS14/15

Bucket (counting) sorts by putting each element a[i] into its
bucket B[a[i]], and then outputting the contents of the buckets,
one after the other. The challenge is to compute the size of the
buckets and index correctly when putting elements into buckets.

The MPI algorithm of the lecture uses MPI_Exscan and
MPI_Allreduce for this; for the performance analysis it is
crucial that both run in O(m+d) steps for m-element input
vectors, for some small d (network property, e.g, log p). OpenMP
and Cilk do not have this functionality; they have locks and
atomics instead.

©Jesper Larsson Träff WS14/15

OpenMP/pthreads: Give a bucket sort algorithm using atomics
or locks for counting and managing buckets. How badly does this
perform (compared to “best” sequential bucket-sort
implementation)? Try to devise a better parallel algorithm, using
variants of the prefix-sums problem (possibly: merging),
implement this as far as possible.

Cilk: Same considerations as above

©Jesper Larsson Träff WS14/15

MPI:
Implement the integer bucket sort algorithm from the MPI
lecture. Assume an array of integers in a given range [0,R[
distributed in roughly equal sized blocks over the MPI
processes (it is acceptable to assume that p divides n)

The algorithm uses MPI_Allreduce and MPI_Exscan to compute
the size of the buckets and to make it possible to determine for
each array element its position in the sorted output. The
(implementation) difficulty is to use this information to set up
an MPI_Alltoallv operation to perform collectively the
redistribution of the array elements into sorted order

©Jesper Larsson Träff WS14/15

Project 5: Fast, Discrete Fourier Transform (DFT, FFT)

The Discrete Fourier Transform (DFT) of an input vector
x[0…n-1] is a vector y with

y[j] = ∑0≤k<n: ω^(jk)x[k]

where the complex number ω = e^(i 2π/n) = cos (2π/n)+i
sin(2π/n) and i = √-1

ω^j is the j‘th n‘th root of unity (ω is called a primitive n‘th root
of unity)

Computing the Discrete Fourier Transform y of x takes O(n^2)
operations

©Jesper Larsson Träff WS14/15

The FFT algorithm (which easily follows from properties of the
n’th roots of unity) computes the Discrete Fourier Transform y
in O(n log n) operations, when n is a power of 2

FFT(x,n)
{
 if (n==1) return;
 for (j=0; j<n/2; j++) {
 z1[j] = x[j]+x[n/2+j];
 z2[j] = (ω^j)*(x[j]-x[n/2+j]);
 FFT(z1,n/2);
 FFT(z2,n/2);
 for (j=0; j<n; j++) {
 if (even(j)) y[j] = z1[j/2]; else y[j] = z2[j/2];
}

©Jesper Larsson Träff WS14/15

1. (Optional warm-up, but good – manipulation of roots of
unity): Prove correctness of the FFT algorithm, e.g. that
FFT computes the same vector as the specification says.

2. Derive the sequential complexity of the FFT algorithm
(number of operations; use O to hide constants)

3. Show the memory access pattern of the algorithm for each
recursive invocation

4. Convert the recursive version into an iterative version,
implement both the trivial O(n^2) algorithm, the recursive
and the iterative FFT

5. Estimate experimentally the n for which the FFT becomes
faster than the trivial O(n^2) algorithm

For the implementations, use all the tricks you can think of.
State which reference works/implementations you consulted (by
try yourself!!); there is a lot!

©Jesper Larsson Träff WS14/15

OpenMP, Cilk: Give parallel implementations of the FFT
algorithm, using the sequential formulation that is most suited.
Assess speedup experimentally relative to your best sequential
implementation . Bonus: compare also to the performance of the
FFT in the MKL (Math Kernel Library, available on saturn). For
OpenMP: experiment with different schedules and chunk sizes

MPI: Show how to adopt the algorithm to the case where both n
and p are powers of 2, and n≥p. State the complexity of the
algorithm, and estimate experimentally speedup for (very) large
n

Bonus: FFT when n is not a power of 2 (and p is not a power of 2)

