
Monitoring Proximity and Coverage Graphs of a
ZigBee-Based Geo-Referenced Mobile Wireless

Sensor Network
Mehmet Ozgan Lilly Maria Treml

Matr.Nr: 0526530 Matr.Nr: 1528458
mozgan@gmail.com e1528458@student.tuwien.ac.at

Abstract—In this project we simulate the motion of nodes in a ZigBee network using GPU. To do so we compute
several graphs describing the spatial attributes and communication between those nodes. This includes a Voronoi
diagram of a given set of seeds in a 2D grid by applying jump flooding algorithm (JFA) on GPU-based many-core
architecture. The solution were implemented in CUDA C programming language.

Index Terms—GPU, Voronoi diagram, proximity graph, connectivity graph, CUDA, parallel computing, network
simulation

F

1 INTRODUCTION

T raditionally, a lot of computer programs have
been written for serial computation. In serial

computation, there is only one processor to compute
of result. This processor has access into the cells of
RAM (Read Only Machine) to read and to write
the datas. Each memory access takes a single time.
Basically, this mode is a single-core computation.

On the other hand, a parallel computer is a set
of processors that are able to work cooperatively
to compute a large problem. There are two main
trajectories for designing microprocessor: multicore
and many-core.

The multicore trajectory seeks to maintain the ex-
ecution speed of sequential programs while moving
into multiple cores. Each processor in this set can
run its own program for computing of results in the
same time. In this case, the memory is shared. A cur-
rent exemplar is Intel®CoreTM i7-7920HQ Processor
which has 4 cores.

The many-core trajectory focuses more on the
execution throughput of parallel applications. In
this case, each thread has a private register set
and local memory, and each block has a shared
memory which can be read from/written to by all
threads in the same block, and finally each grid has
a global memory which is accessible from all the
blocks inside. On a higher level each processor has
its own cache and the whole device (GPU) has a
DRAM (Dynamic Random Access Memory). The

Fig. 1 shows the architecture difference between
CPU and GPU.

Fig. 1. Basic structure of a typical CPU and GPU

A graphics processing unit (GPU) is a chip that
handles any functions relating to what displays on
computer’s screen. GPUs are used in many different
devices for example personal computers, embedded
systems, mobile phones etc.

2 PROBLEM DESCRIPTION

In a ZigBee Network, nodes can only communicate
if the following two conditions are satisfied:

• Nodes are in the communication range
• Type (router, end-device, coordinator) of the

nodes are compatible

1

Therefore, to monitor the change in connections and
coverage, a simulation using paralell algorithms
should be implemented. The simulation includes
the motion of the nodes according to different
mobility models, as described in [6] and gener-
ating a proximity-graph, a voroni-diagram and a
connectivity-graph at each timestep to gain infor-
mation about the connectivity and spacial attributes
of the network. However, the nodes should not
collide with each other or other obsticles, therefore
a collision avoidance using GPU needs also to be
implemented.

3 PARALLELISM IN GPU

A CUDA program consists of one or more phases
that are executed on either the host (CPU) or a
CUDA-capable device (GPU). The host code can be
written in ANSI C, C++ or both of them. The device
code is written in ANSI C extended with keywords
for labeling data-parallel functions, called kernels,
and their associated data structures. A simple kernel
call looks like the following code:

kernel<<< gridDim, blockDim >>>(args);

gridDim is the dimensions of the grid in blocks and
blockDim is the dimensions of the block in threads.

4 VORONOI DIAGRAM

Definition 4.1. Let S = {p1, p2, . . . , pn} be a set of n
different points in the R2 plane. A Voronoi diagram
divides the plane into n polygonal regions called
Voronoi regions, and ith Voronoi region denoted by
V(pi) of point pi.
For p, q ∈ S and p 6= q, let

• L(p, q) = {z ∈ R2; |p− z| = |q − z|},
• A(p, q) = {z ∈ R2; |p− z| < |q − z|}.

L(p, q) is the line segment of p and q. For each
element r in the set L(p, q), the distance between r
and p is equal to between r and q. A(p, q) gives the
set of points in the given plane which are nearest to
p than q. The set

A(p, S) =
⋂
q∈S
p 6=q

A(p, q) (1)

of all points z that are closer to p than to any
other element of S. In other words, A(p, S) is the
area of Voronoi region V(p).

5 MOBILITY MODEL

The mobility modles describe the motion of the
nodes in the simulated network. In [6] several
models are described. In our simulation we use
the Random Walk Model and the Random Waypoint
Model, which can be chosen by the user. Further,
for usability reasons we fixed the step-size of the
simulation, as we do not have a GUI.

5.1 Random Waypoint
At the start of the simulation each node gets a
random destination point assigned. With continous
velocity each node moves towards the destination,
if it reaches the destination, it gets assigend a new
random destination and velocity. [6] To do so, each
destination is saved in a map with the node-id as
key, after each step of the simulation it is checked
if the node arrived at the destination, depending
on this condition the next move will be executed.
Further, to consider the different velocities of the
nodes, they get assigend a random velocity, which
can be either xmax or ymax, depending which is the
smaller one, divided by step number at max. In case
of a possible collision,the nodes get a new destina-
tion assigend, therefore they should automatically
move away from each other.

5.2 Random Walk
Similar to the Random Waypoint, the Random Walk
the movement of the nodes depends on random-
ness. The idea behind this movement, is the emula-
tion of particle movement in physics [6]. As there
is a uniformly possibilty of a particle being at a
specific position, the nodes change their direction at
each simulation step [6]. Therefore, the coordinates
in the map will be reassigened after every step,
which results in a random movement of the nodes.
As we want to present a significant difference in the
position of the nodes, the nodes ”jump” randomly
up, down, left, or right. To do so, wie randomly
assign new coordinates to each node, which gives
an equal distributed possibility of where the node
will appear. There is also a slight possibility, that
the node does not move or just appears at the other
side,if the node is too close to the boundry. In case
of a collision, the node moves away in the field, till
there is no more collision.

6 CONNECTIVITY GRAPH

This directed graph describes the communication
between the nodes. As mentioned before, nodes

2

in the ZigBee protocol can only communicate with
each other if they are in each others range and com-
patible. At each step, those conditions are validated
and according to the result, the graph generates the
communication representation. To visualize those
connections, we provide a .png file and an array,
which represents the edges between the nodes.

7 PROXIMITY GRAPH

This undirected graph describes the spatial distance
between nodes. If the nodes satisfy predefined geo-
metric conditions. In this project the geomteric con-
ditions are predefined by the Voronoi-Diagramm.
Therfore the proximity graph gives the edges of the
nodes using the vornoi cells.

8 JUMP FLOODING ALGORITHM

In this project we use a Jump Flooding Algorithm
(JFA) to generate the Voronoi diagram. The reason
for this is, as [7] states, the speed of JFA is nearly
independent to the number of input sites. However,
there is a possibility of pixel errors in the output, as
some pixels incorrectly record the nearest sites. [7].
The principle of the JFA is quite simple (see 2. At
the beginning we have a n x m grid. The pixel in
the lower left corner of the grid is our start point,
therefore we suppose it has some attributes/infor-
mation we want to propagate over the grid. First,
we propagate the information of the start (seed) to
its (maximum) eight neighbors at positions (x+i,y+j)
where i,j1,0,1 [7]. In every step, we propagate the
information using the neighbors to the next pixel in
the grid, therefore the whole grid is ”filled” after n-1
steps. [1]

Fig. 2. Schematic representation of the JFA according to [7]

9 COLLISION AVOIDANCE

To detect collisions we create an array gpu collision,
which represent a collision between two nodes, if
the value is set to 1. This array is created while
computing the Voronoi diagram, by doing so we
can use the cells to limit the possible collisions. The
array is then checked during the motion and subse-
quently, as mentioned in section 5.2 and section 5.1,
the collisions are handled accordingly.

10 BENCHMARKING

As our algroithms are based on randomness, we
used fixed values for sites and destination, to pro-
vide statistical relevant information. This informa-
tion then can be used to benchmark and evaluate
the efficiency and differences of the algorithms de-
pending on the number of nodes. The fixed values
are stated below:

• max x-coordinate 2048
• max y-coordinate 2048
• number of sites 8

10.1 Results

Results of the benchmarking are provided in a result
file, which will be generated after execution. The
file gives infomration about the used GPU and
running time of the different algorithms in ms and
the spatial attributes of the graphs. For example see
listing 1. Further a more specific documentation and
explanation of the algorithms can be found in the
comments of the code.

The used GPU
Device name: GeForce GT 740M
Memory Clock Rate (KHz):

900000
Memory Bus Width (Bits): 64
Peak Memory Bandwidth (GB/s):

14.400000

Results for 2048x2048 coordinates
system

with 4 routers and 4 end devices
--- --- --- --- --- --- --- --- ---

--- --- --- --- --- --- --- --- ---

The elapsed time in GPU for
Connectivity algorithm: 2.00 ms

The elapsed time in GPU for JFA
Voronoi algorithm: 258.16 ms

3

The elapsed time in GPU for Proximity
algorithm: 18.26 ms

Vertices of proximity graph: (1, 0)
(1, 2) (1, 6) (2, 3) (2, 7) (3, 4)
(3, 7) (4, 5) (5, 0) (5, 6) (5, 7)
(6, 0) (7, 0) (7, 4)

Vertices of connectivity graph: (0, 7)
(2, 7) (6, 1) (7, 0) (7, 3) (7, 4)

Collisions: (3, 4) (4, 3)

Listing 1. Example for Benchmark Result File

11 SIMULATION

11.1 Usage
For usability reasons we use a make-file to create the
executables, depending on what the user wants. By
executing make help in the command line, the user
can see the options. When choosing BENCH the
benchmarking is called and the user does not have
to provide any parameters. Otherwise, the user has
to choose the mobility model additionally to the
parameters specified in the project description. If
the input is incorrect, we provide a usage-message
as assistance.

11.2 Output
We provide several output files. This includes the
Voronoi Diagram, the Connectivity Graph and the
Connectivity Graph as png, additionally we repre-
sent the graphs as list of edges in the result file. The
edge-list representation is to ensure an overview of
the graphs, as for example, the lines which represent
the edges in the connectivity graphs, are partly hard
to see in the png.

12 CONCLUSION

As many references state, the JFA algorithm is
prone to errors in the pixels. Therefore we tried
to optimize the algorithm and reduce its errors,
but it is still far from perfect. Further due to the
lack of randomness in curand(), it was a challenge
to correctly implement the random based mobility
models and initialization. Additionally the bench-
marking results will be distorted by using random
based algorithms, therefore we can only provide the
resources and time consumed by the algorithms.

In summary, CUDA is a great option to code in
GPU, unfortunately it seems to be error-prone, as
for example curand() mentioned above. Further, the
smaller number of available datatypes complicate

the implementation of simple algorithms. However,
the higher efficiency of using GPU instead of CPU
in simulation is mentioned in several references and
CUDA is a great tool to get started.

REFERENCES

[1] Guodong Rong, Jump Flooding Algorithm On Graphics Hard-
ware And Its Applications, 2007

[2] Guodong Rong, Tiow-Seng Tan, Jump Flooding in GPU with
Applications to Voronoi Diagram and Distance Transform, 2006

[3] David B. Kirk, Wen-mei W. Hwu, Programming Massively
Parallel Processors: A Hands-on Approach, 2010.

[4] Rolf Klein, Concrete and Abstract Voronoi Diagrams, Springer-
Verlag Berlin Heidelberg, 1989.

[5] V. Thambawita, R. Ragel, D. Elkaduwe, To Use or Not to
Use: Graphics Processing Units (GPUs) for Pattern Matching
Algorithms.

[6] S.M. Mousavi, H. R. Rabiee, M. Moshref, A. Dabirmoghad-
dam, Mobility Pattern Recognition in Mobile Ad-Hoc Net-
works, ACM International Conference on Mobile Technol-
ogy, Applica- tions and Systems (ACM Mobility Conference
2007), Singapore, 10-12 September 2007

[7] Rong, Guodong, and Tiow-Seng Tan. Variants of jump flood-
ing algorithm for computing discrete Voronoi diagrams., Voronoi
Diagrams in Science and Engineering, 2007. ISVD’07. 4th
International Symposium on, pp. 176-181. IEEE, 2007

4

	Introduction
	Problem Description
	Parallelism in GPU
	Voronoi Diagram
	Mobility Model
	Random Waypoint
	Random Walk

	Connectivity Graph
	Proximity Graph
	Jump Flooding Algorithm
	Collision Avoidance
	Benchmarking
	Results

	Simulation
	Usage
	Output

	Conclusion
	References

